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1 | Introduction

Theorised by Benoit Mandelbrot in 1975, Fractals are commonly known as self-similar

patterns on different scales found in the natural world around us("fractal"). Examples can be seen

in galaxies, flowers, leaves, and rivers.

Fig 1. Fractal Patterns in Galaxies("Whirpool Galaxy") Fig 2. Fractal Patterns in Plants (9 Amazing) Fig 3. Fractal Patterns in rivers(9 Amazing)

Fractals can also be found through computerised algorithms such as the Mandelbrot set where

groups of complex numbers are graphed in a manner that is also self-similar at varying scales.

Fig 4. The Mandelbrot Set
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The fractal dimension is a measure of the degree of self-similarity an object has. A higher

dimension suggests that an object has greater self-similarity. A fractal dimension is also a

measure of the complexity/roughness of an object. The fractal dimension of a line is 1, the fractal

dimension of a square is 2 and a cube has a fractal dimension of 3 ("Fractal Dimension"). A

fractal dimension less than 1 means the object has properties similar to a line but has a roughness

in some form that does not permit it to be strictly 1-dimensional. Similarly, a fractal dimension

that is between the values of 1 and 2 implies that the object looks two-dimensional but has some

roughness to it. An example of this is the coastline of Britain or the Sierpinski Triangle. An

object that is three-dimensional but has roughness would yield a fractal dimension between 2 and

3("Fractals Are Typically").

Currently, there is no commonly accepted method through which fractals manifest in

music and what a fractal pattern in music comprises but different approaches have been taken in

the past. These include Temporal Scaling and Tonal Complexity.

Temporal scaling relies on fractal-like variations in tempo where a single note is scaled

down by a constant factor and duplicated to produce a repeating pattern, thus exhibiting fractal

properties. Tonal complexity analyses fractals through the variation of pitch. It helps distinguish

between musical patterns that vary not in their tempo but in their tones.
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1.1 | Aim

This investigation aims to identify existing fractal patterns in audio signals. This will help better

understand the tonal and rhythmic complexities within music and contribute to existing

musical knowledge.

This leads to the research question: To what extent can Fourier transform and Wavelet

transform be used to identify fractal patterns in an audio signal?

2 | Fractals in Geometry and Music: A Comparison

2.1 | Fractal Patterns and Dimensions

To explain the logic behind the fractal dimension, the case of known bodies will be taken.

If a straight line were to be scaled down by a factor of 2, it would yield two identical smaller

lines. If the same were to be done with a square, one would obtain four smaller squares of equal

area, and if a cube side length were to be scaled down by a factor of 2, one would obtain 8

smaller cubes of equal volume. Since all these broken-down pieces have the same exact shape,

we call them “self similar pieces.” The data has been presented in tabular form below and

visualised through the image provided:
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Geometric Body Scale factor Number of self-similar pieces

Line 2 - Line is 1D2 =  (2)1

Square 2 - Square is 2D4 =  (2)2

Cube 2 - Cube is 3D8 =  (2)3

Table 1: Scaling factor and Self Similar Pieces

Fig 5. Fractal Dimension Derivation ("Fractals Are Typically")

A relation between the scaling factor and a number of self-similar pieces is present. In fact, the

obtained number of self-similar pieces is the scaling factor raised to the dimension of the

geometric body.
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This presents us with a definition of a dimension ("Fractals Are Typically").

Neither lines, squares, or cubes are true fractals(objects that have a non-integral dimension). Two

common examples of patterns considered to be fractals are Koch’s Snowflake and Sierpinski’s

triangle.

The Sierpinski’s triangle is a shape considered to be a fractal.

Fig 6. Sierpinski’s Triangle (“Fractal Dimension”)

If the shape is scaled down by a factor of 2 (all the side lengths are halved), three

self-similar copies of following shape are obtained.

Fig 7. Scaled Sierpinski’s Triangle (“Fractal Dimension”)
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Using the previous definition of dimension, the following equation is obtained:

where D is the dimension. This leads to the formulation of a logarithmic relationship:(2)𝐷 =  3

𝐷 × 𝑙𝑜𝑔(2) =  𝑙𝑜𝑔(3)

.𝐷 = 𝑙𝑜𝑔(3)
𝑙𝑜𝑔 (2) ≈ 1. 585

The dimension of Koch’s snowflake can be found in a similar manner:

Fig 8. Koch’s snowflake

In this case the length (horizontal axis) has been reduced to a third of its initial size.

However, the scaling of the object yields four self-similar copies of the snowflake. Hence the

fractal dimension is:

4 =  (3)𝐷

From this, we get

𝑙𝑜𝑔(4) =  𝑙𝑜𝑔 (3𝐷)

Using log properties:

𝑙𝑜𝑔(4) =  𝐷 𝑙𝑜𝑔 (3)
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Hence:

("Fractals Are Typically")𝐷 = 𝑙𝑜𝑔(4)

𝑙𝑜𝑔 (3)
≈ 1. 262 

A generalised equation can be formed relating the fractal dimension D; the factor by which the

object is being scaled, S; and the total number of self-similar pieces created after scaling, N.

Thus, we get: ("Fractal Dimension").𝐷 = 𝑙𝑜𝑔(𝑁)

𝑙𝑜𝑔 (𝑆)

2.3 | Literature Review - Fractals in Music: Temporal Scaling and

Tonal Complexity

In temporal scaling, each copy of the music is created such that the notes of the motif (the

melody) are shortened by a given factor. Temporal scaling works similarly to traditional

geometric fractals where objects are scaled and tiled. Initial suggestions of this method were

done by Henderson Sellers and Cooper. A sample motif begins with a four-note melody and is

followed up with the same melody but tiled 4 times with quarter notes. This melody is further

copied with 64 eighth notes to form the fractal pattern.

In the image below, a musical pattern comprising a two-note and two-rest pattern has been

composed. In the second line, this pattern has been repeated only this time with three notes that

are half the duration.
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Fig 10. Temporal Scaling (McDonough and Herczyński)

The resulting fractal dimension is:

(McDonough and Herczyński)𝐷 = 𝑙𝑜𝑔(3)
𝑙𝑜𝑔(2)  = 𝑙𝑛(3)

𝑙𝑛 (2)  1. 58

This method of creating sequences with notes shorter in length have been defined as nested

sequences. Thus it is possible to create a non-integral fractal dimension in a musical

composition.

Tonal Complexity

On the other hand, tonal complexity is a method that manipulates the pitch of a scoresheet. This

can be used to analyse music containing minimal temporal variation. Tonal complexity helps

distinguish between musical patterns that vary not in their tempo but in their tones. In order to

quantify this, the 12 note scale, the difference between two notes is given as a ratio of their

frequencies. As a baseline, two notes separated by an octave are in the ratio 2:1. Consequently,

the ratio between two notes differing by a specific interval of j notes is given by . The ratio2
𝑗

12

obtained is further analysed for fractal patterns through the application of log rules (McDonough

and Herczyński).
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Temporal scaling works in a similar method to geometric fractals. As previously

elaborated, the temporal scaling relies on the scaling factors and the number of total self-similar

pieces that appear due to the scaling down in the duration of a note. However, tonal complexity

in music, as defined in the paper, only exists for specific cases when the notes on the scoresheet

resemble a visual fractal. Since this method of calculating fractals cannot be generalised for any

musical motif, a new method to decipher the fractal dimension in music must be used.

3 | Methodology and Data Collection

3.1 | Methodology

The approach taken is one that will analyse the waveforms created by music.

This first step would be to understand precisely how a change in musical characteristics

affects the signal produced.

This would be followed by an exploration of two different mathematical tools: The Fourier

and Wavelet Transforms in an attempt to obtain a fractal dimension of the audio signal.

3.2 | Data Collection

To conduct this study, a sample music audio known to exhibit qualitative fractal patterns was

used. The soundtrack used was created by YouTuber Woochia - Charly Sauret. The audio

comprised a melody that was initially played at a given pace. The melody was then layered with
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repeats of itself at shorter paces. Each layer was also played at a higher octave such that when it

was played, it sounded like the music was ridden with many smaller, self similar layers of itself.

Fig 11. GarageBand File with the piece of music being analysed

5 | Using the Fourier Transform to Investigate Fractal

Patterns in Music

The Fourier Transform is a mathematical tool that breaks down a waveform (function or

signal) into its sine and cosine components. The transform converts a waveform from a time vs

amplitude graph to a frequency vs amplitude graph.

The Fourier Transform is given as follows:
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𝑔(𝑓) =
−∞

∞

∫ 𝑔(𝑡)𝑒−2π𝑖𝑓𝑡𝑑𝑡

Where is the time interval and is the frequency ("But What").𝑡 𝑓

From the Fourier Transform, any given signal can be represented as the sum of a group of

sinusoidals.

When graphed, the waveform obtained from the Fourier Transform is a graph with

varying peaks that signify the strength (amplitude) of the signal at given frequencies. When

applied to music, the peaks observed help understand the notes that comprise the audio signal.

The Fourier Transform has an imaginary sine component. However, graphical

representations of the Transform omit this part of the wave and hence the individual component

graphs only include the cosine component and are represented in the following way:

where a is the amplitude of the wave, f is the frequency and c is the phase𝑎𝑐𝑜𝑠( 2π 𝑓 𝑡 +  𝑐)

response of the signal at the given frequency.

The amplitude of a sound signal is usually given in decibels. The conversion between

decibels and metres is:

Metres (amplitude) = ("Decibel Conversion")10
𝑑𝐵
20

For example, if the amplitude of the sound wave was -12 dB:

metres.10
−12
20 = 2. 51 ×  10−1 

To epitomise this process, the Fourier Transform has been applied to the sample audio

created:
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Fig 14. The waveform of the created audio file on Audacity Software

Figure 14 depicts the wave signal from the audio file. This signal is currently in the time domain

where amplitude is graphed against time. The Fourier Transform is then computed and the signal

is converted into the frequency domain. This is done using a software called Audacity.

The Fourier Transform (Fig 15) highlights the frequencies at which the sound wave has

the strongest power (amplitude). The peak frequencies and their associated amplitudes are

recorded and substituted into the cosine equation given above. Given the complex nature of the

sinusoid, there will be an argument (known as the phase) of the waveform. As a result, each

frequency is accompanied by a phase response. In the component sinusoids, the phase plot

depicts the horizontal translation of the cosine wave.

.
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Fig 15. The Fourier Transform of the created audio file on Audacity Software

Fig 16. The Phase plot of the created audio file on Audacity Software

From the Fourier and phase diagrams of the sound signal, one can find the individual

sinusoids that comprise the sound signal. The following are the cosine components obtained

from the graph above.

Note Frequency Amplitude (dB) Sound Wave Equation

F#2 96 -26.0 0. 05012𝑐𝑜𝑠((2π)(96)(𝑡) − 1302. 02)

B3 248 -23.8 0. 06531𝑐𝑜𝑠((2π)(245)(𝑡) − 2075. 12)

F#4 367 -24.2 0. 06166𝑐𝑜𝑠((2π)(367)(𝑡) − 3296. 94)

C#5 553 -29.8 0. 03236𝑐𝑜𝑠((2π)(553)(𝑡) − 3658. 00)

F5 680 -33.5 0. 02113𝑐𝑜𝑠((2π)(680)(𝑡) − 4056. 30)

A5 872 -31.2 0. 02754𝑐𝑜𝑠((2π)(872)(𝑡) − 5733. 22)
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A#6 1862 -32.4 0. 02399𝑐𝑜𝑠((2π)(1862)(𝑡) − 11173. 50)

Table 2: Equations of the waveform from sample audio

Fig 17. The reconstructed waveform of the audio graphed on desmos using the information from the Fourier

Transform

The graph above depicts the waveform for a sample sound file that has been analysed.

When the equations derived from the Fourier Transform representation of the file were graphed,

the initial waveform in the time domain was obtained.

5.1 | Manipulation of Sound and its Impact on the Fourier Decomposition

There are two main characteristics of sound that can be manipulated: the pitch (how high

or low a note sounds) and the tempo (how fast the sound may be repeated) of the signal, all of

which have been demonstrated below. Since this approach includes the analysis of waveforms,
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seeing how musical characteristics such as pitch, volume and tempo affect waveforms is

important.

5.1.1 | Impact of Pitch on Waveforms:

Below are the Fourier Transform graphs of the C4 and C5 notes (two C notes separated

by an octave). The Fourier Transforms of the Graphs are shown below. To investigate the impact

of pitch, the loudness(-12dB) and the tempo will be kept constant.

Fig 18. C4 note Fourier transform Fig 19. C5 note Fourier transform

Fig 20. C4 note Phase Response
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Fig 21. C5 note Phase Response

In the images above, the Fourier Transform and phase plots of the two notes can be seen.

When a single note is played, there is usually one single frequency where a spike is observed.

This is known as the principal frequency and is the most prominent component of the sound

signal. However, the peak is also accompanied with harmonics (smaller and weaker components

of the sound wave). The C4 note has a frequency of approximately 256 Hz (as indicated in the

diagram) and is the strongest component of this sound signal (fundamental frequency).

In the second figure, a C5 note has been played at the same controlled volume. From the

Fourier Transform, it can be seen that the C5 note is the principal frequency at 525Hz due to the

major spike in the Transform.

The equations pertaining to both C4 and C5 notes can be seen below:

C4 note equations C5 note equations
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0. 15488 𝑐𝑜𝑠( (2π) ( 261)( 𝑡) −  98. 56) 0. 16898 𝑐𝑜𝑠((2π )( 525)( 𝑡) −  130. 783)

0. 04121 𝑐𝑜𝑠( (2π )( 515)( 𝑡 ) −  131. 288) 0. 034674 𝑐𝑜𝑠((2π ) (1049)( 𝑡) −  199. 600)

0. 044157 𝑐𝑜𝑠((2π) (384)( 𝑡) −  112. 56) 0. 047863 𝑐𝑜𝑠((2π ) (1547) (𝑡) −  249. 473)

0. 064565 𝑐𝑜𝑠((2π )( 652)( 𝑡) −  149. 892) 0. 01698 𝑐𝑜𝑠((2π )( 2648)( 𝑡) −  373. 228)

0. 057544 𝑐𝑜𝑠((2π )( 919)( 𝑡) −  180. 892) 0. 02786 𝑐𝑜𝑠((2π )( 89)( 𝑡) −  320. 438)

Table 3: Waveform constituent parts equations for C4 and C5 notes

Fig 22. The constructed waveforms of the C4 and C5 note using Desmos

By comparing the Fourier representations of the two signals, it is clear that an increase in

pitch leads to an increase in the frequency of the principal note. Also, the frequency of the C5

note was observed to be approximately double the frequency of the C4 note. Thus, it can be

concluded that the frequency of notes separated by octaves is multiples of each other. Important

to note on these graphs is the domain restriction where as time is positive.𝑥 > 0
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5.1.2 | Impact of Tempo on Waveforms:

The final characteristic of sound that is investigated is the tempo of the sound. This is

important to investigate because previous literature on fractals in music uses temporal scaling

(manipulation of the music’s tempo) in a way that mimics the Cantor set and Koch’s snowflake

to create fractal patterns. In order to understand the effect of tempo on the Fourier Transform and

the signal in general, a C4 note was repeated a varying number of times over a fixed time

interval.

The equations derived from the Fourier Tansform of the C4 note have already been given

above. To evaluate the tempo, a time interval of two seconds over which the sound wave would

be analysed was kept constant. Instead of playing a single note, three notes were played in the

fixed time interval. The equations obtained for them have been given below:

C4 Slower Tempo (1 rep/2 second interval) C4 Faster Tempo (3 reps/2 second interval)

Principal: 0. 15488 𝑐𝑜𝑠( (2π) ( 261)( 𝑡) −  98. 56) Principal: 0. 3981𝑐𝑜𝑠((2π)(261)(𝑡) −  829. 454)

C5: 0. 04121 𝑐𝑜𝑠( (2π )( 515)( 𝑡 ) −  131. 288) C5: 0. 07413 𝑐𝑜𝑠( (2π )( 515)( 𝑡 ) −  1556. 91)

G4: 0. 044157 𝑐𝑜𝑠((2π) (384)( 𝑡) −  112. 56) G4: 0. 08035 𝑐𝑜𝑠((2π) (384)( 𝑡) −  1173. 29)

E5: 0. 064565 𝑐𝑜𝑠((2π )( 652)( 𝑡) −  149. 892) E5: 0. 09226 𝑐𝑜𝑠((2π )( 652)( 𝑡) −  1954. 08)

A#5: 0. 057544 𝑐𝑜𝑠((2π )( 919)( 𝑡) −  180. 892) A#5: 0. 05754 𝑐𝑜𝑠((2π )( 919)( 𝑡) −  2741. 92)

A#2: 0. 056234𝑐𝑜𝑠((2π)(118)(𝑡) − 53. 5889) A#2 note: 0. 18621𝑐𝑜𝑠((2π)(118)(𝑡) − 604. 29)

G5: 0. 01995𝑐𝑜𝑠((2π)(779)(𝑡) − 161. 876) G5: 0. 06531𝑐𝑜𝑠((2π)(779)(𝑡) − 2341. 47)

Table 4: Constituent Equations of the C4 note at varying tempi
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Fig 23. Comparisons of the waveforms of notes at varying tempi

From the analysis of a tempo that is even faster than the previous analysis, the phase

value at each frequency continues to increase. In the equation of the cosine wave, this is seen as a

change in the horizontal translation of the waveform as the phase of the wave is denoted by ‘c’ in

the equation: 𝑦 =  𝑎𝑐𝑜𝑠( 2π 𝑓 𝑡 +  𝑐)
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Also, the amplitude is increasing. To understand the 3 audio files in comparison to each other,

their equations have been plotted below, thus creating the waveform each audio exhibits:

Despite seeing a change in the phase, there is no evident pattern regarding the amount by

which the phase or amplitude changes which makes interpretation of any applications of the

Fourier Transform difficult.

5.2 | Fractal Dimension of a piece of music using the Fourier

Transform

From the initial investigation, the following conclusions have been drawn:

1. An increase in the pitch of the sound file leads to an increase in the frequency of the

waveform. Moreover, increasing the pitch by a perfect octave leads to the exact doubling

of the waveform’s fundamental frequency

2. An increase in the loudness of the sound file leads to an increase in the amplitude of the

waveform

3. An increase in the tempo of the waveform leads to an increase in the phase and amplitude

After using the Fourier Transform in an attempt to identify fractal patterns in music, it

has been concluded that the Transform does not have the complexity required to help find fractal

patterns. Tempo, which is an important factor for fractals in music cannot be manipulated in a

controlled manner. This irregularity makes finding any type of self-similarity difficult. An

alternative is the wavelet transform: a more intricate mathematical tool which represents an

audio signal in the time and frequency domain will be explored further.
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6 | Using the Wavelet Transform to Investigate the

Fractal Patterns Music

The Wavelet Transform is another mathematical tool used in waveform analysis. This

mathematical tool goes a step further from the Fourier Transform and helps analyse a signal in

both the time and frequency domain and is expressed in the following manner:

(M.G. Manisha Milani and De Silva)𝐹(τ, 𝑠) =  1
|𝑠|

×
−∞

∞

∫ 𝑓(𝑡) × ψ * ( 𝑡−τ
𝑠 )𝑑𝑡

Where:

are the decomposition coefficients - representation of the amplitude and phase response𝐹(τ, 𝑠)

of a signal at different scales and positions (parameters) in the transform - obtained at scaling and

translation parameters and𝑠, τ

is the complex conjugate of the binary Haar wavelet.ψ *

A scaling parameter, expressed as allows the signal to be compressed (ψ * ( 𝑡
𝑠 )

) depicting lower frequencies of the signal or stretched ( ) depicting higher0 < 𝑠 < 1 𝑠 > 1

frequencies and more detailed parts of the wavelet. Thus, the scaling factor permits the analysis

of the waveform broadly or in great detail.

The translation parameter, expressed as allows the signal to be shiftedψ * (𝑡 − τ)

horizontally across the time axis. However, since this investigation is about fractal patterns, only

an analysis of the scaling parameter (the signal at varying magnification levels) is necessary as

the translation parameter does not change the waveform.

The transform, however, does have a limitation. At a given time, accuracy can only be

obtained in either the time or frequency domains.
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When values for the scaling and translational parameters are substituted into the

transform, the resulting set of values obtained are known as decomposition coefficients. In

MATLAB, the coefficients obtained are from increasing “levels.” The exact scaling values are

not known but it is known that each level yields progressively more detailed readings.

6.1 | Investigating Fractal Patterns using Wavelet Transform

Exploring fractal patterns using the wavelet transform has been done before by Guoxi

Lia, Kai Zhanga, Jingzhong Gongb, and Xin Jin. To do so, the decomposition coefficients at

varying levels will be taken and analysed. Since each level yields a large number of coefficients,

the variance of these coefficients will be calculated and graphed. The graph will be the level or

scaling parameter at which the decomposition coefficients are taken (1,2,3,4,5,6,7) vs"𝑠"

. The variance levels will be plotted until the relationship received is𝑙𝑜𝑔
2
(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑎𝑡 𝑙𝑒𝑣𝑒𝑙)

non-linear. The mathematical proof for this relationship is the following:

As previously mentioned, the decomposition coefficients of the wavelet are given by:

𝑑𝑠,τ(𝑡) = 𝐹(𝑠, τ) =
−∞

∞

∫ 𝑓(𝑡)(ψ*)(𝑡)𝑑𝑡

Where is the complex conjugate ofψ* ψ𝑠,τ

The binary wavelet satisfies the condition of zero mean value (the mean of the

decomposition coefficients obtained at particular scaling parameters is 0).
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The power spectral density given by is the measurement of the power a signal𝑆(ω)

carries (the sum of the absolute squares of its time-domain samples divided by the signal length)

at various frequencies. The spectral density at a given frequency is given by the following

formula:

𝑆(2−𝑠ω
0
) = 1

𝑁
𝑠 𝑘=1

𝑁
𝑠

∑ (𝑑𝑠,τ)2

Where is the reference frequency of the function at which the power is calculated and Ns isω
0

the number of decomposition coefficients at scaling and translation parameters respectively.𝑠, τ

At high frequencies, the surface of the signal is zoomed into, thus providing information

about the finer details of the wavelet. On the other hand, at lower frequencies, a broader

overview of the wavelet is seen. As a result, low frequencies, due to the proportion of the signal

they cover, dominate the power spectrum and have the highest powers while higher frequencies

have lower power.

Thus, the power spectral density of a signal is inversely proportional to the frequency.

Through empirical observations, a relationship known as the law is obtained where the1

𝑓β  

power spectrum is inversely proportional to where is a constant and is known as the𝑓β β

power-law exponent (developed through empirical evidence).

Thus, in this case:

𝑆(ω) ∝ 1

ωβ
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The power law exponent is related to the Fractal Dimension D through empirical observation in

the following way:

β = 2(2 − 𝐷) + 1

β =  4 − 2𝐷 + 1

β = 5 − 2𝐷

We can now substitute this into:

𝑆(ω) ∝ 1

ω(5−2𝐷)

From this, we get:

1
𝑁

𝑠 𝑘=𝑠

𝑁
𝑠

∑ (𝑑𝑠,τ)2 ∝ 1

(2−𝑠ω
0
)(5−2𝐷)

The variance, of the decomposition coefficients a scaling paramaters is given as:𝑠, τ

𝑣𝑎𝑟[𝑑𝑠,τ] = 1

𝑁
𝑠 𝑘=1

𝑁
𝑠

∑ (𝑑𝑠,τ − 𝑑𝑠,τ)2 

Since the binary wavelet satisfies the condition of the zero mean value, the mean becomes 0.

Therefore,

𝑣𝑎𝑟[𝑑𝑠,τ] = 1

𝑁
𝑠 𝑘=1

𝑁
𝑠

∑ (𝑑𝑠,τ − 0)2 

As a result, the power spectrum and variance at parameters is given asτ, 𝑠

𝑣𝑎𝑟[𝑑𝑠,τ] = 𝑎 × 1

(2−𝑠ω
0
)(5−2𝐷) = 𝑎 × 1(5−2𝐷)

(2−𝑠ω
0
)(5−2𝐷) = 𝑎 × ( 1

(2−𝑠ω
0
)

)(5−2𝐷) 

Where is the constant of proportionality𝑎
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Taking the base two logarithms of both sides (base 2 has been taken as the wavelet being used is

a binary wavelet).

𝑙𝑜𝑔
2
(𝑣𝑎𝑟[𝑑𝑠,τ]) =  𝑙𝑜𝑔

2
( 1

(2−𝑠ω
0
)

)(5−2𝐷) ×  𝑎)

𝑙𝑜𝑔
2
(𝑣𝑎𝑟[𝑑𝑠,τ]) =  𝑙𝑜𝑔

2
(( 1

(2−𝑠ω
0
)

)(5−2𝐷))  + 𝑙𝑜𝑔
2
(𝑎)

𝑙𝑜𝑔
2
(𝑣𝑎𝑟[𝑑𝑠,τ]) = (5 − 2𝐷) × 𝑙𝑜𝑔

2
( 1

(2−𝑠ω
0
)

) + 𝑙𝑜𝑔
2
(𝑎) 

𝑙𝑜𝑔
2
(𝑣𝑎𝑟[𝑑𝑠,τ]) = (5 − 2𝐷)𝑙𝑜𝑔

2
( 2𝑠

ω
0

) + 𝑙𝑜𝑔
2
(𝑎)

𝑙𝑜𝑔
2
(𝑣𝑎𝑟[𝑑𝑠,τ]) = (5 − 2𝐷)[𝑙𝑜𝑔

2
(2𝑠) − 𝑙𝑜𝑔

2
(ω

0
)] + 𝑙𝑜𝑔

2
(𝑎)

𝑙𝑜𝑔
2
(𝑣𝑎𝑟[𝑑𝑠,τ]) = (5 − 2𝐷) × [𝑠 𝑙𝑜𝑔

2
(2) − 𝑙𝑜𝑔

2
(ω

0
)] + 𝑙𝑜𝑔

2
(𝑎)

𝑙𝑜𝑔
2
(𝑣𝑎𝑟[𝑑𝑠,τ]) = (5 − 2𝐷) × 𝑠 − (5 − 2𝐷)𝑙𝑜𝑔

2
(ω

0
) + 𝑙𝑜𝑔

2
(𝑎)

Taking as a constant :− (5 − 2𝐷)𝑙𝑜𝑔
2
(ω

0
) + 𝑙𝑜𝑔

2
(𝑎) "𝑏"

𝑙𝑜𝑔
2
(𝑣𝑎𝑟[𝑑𝑠,τ]) = (5 − 2𝐷) × 𝑠 +  𝑏

This creates a linear relationship correlating the level at which the scaling parameter is taken𝑠

with the binary log of the variance of the decomposition coefficients at the given level

In the function, is the y-intercept of the graph.𝑏

Therefore the fractal dimension is given as:

(Li et al.)𝐷 = (5−𝑀)
2

Where is the gradient of the graph.𝑀 =  5 − 2𝐷
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From the method proved above, the fractal dimension of the previously used audio file is once

again called upon.

The next step was to analyse the fractal dimension of the layered audio.

Since there are a massive number of decomposition coefficients at each scaling level, the

variance cannot be calculated manually. Instead, MATLAB is used and the variance is obtained

through the software’s processing. The commands imputed into MATLAB can be found in the

appendix attached.

From the method previously detailed, the variances obtained from the decomposition

coefficients at the various levels were obtained as:

Level
(scaling
vector)

Variance of Decomposition Coefficients 𝑙𝑜𝑔
2
(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

1 8. 190900004133981 × 10−5 − 13. 5756184926

2 6. 179638006060353 × 10−4 − 10. 6601900499

3 0. 004087743510074 − 7. 93447960902

4 0. 020450087231319 − 5. 61174919268

5 0. 067383453650594 − 3. 89146181598

6 0. 119855603927593 − 3. 06063073017

7 0. 122479993752166 − 3. 029381980536
Table 5: Variance of the decomposition coefficients of the Wavelet at varying scaling parameters (for layered audio)
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Fig 24. The obtained linear plot of the level of scaling parameter vs binary log of variance of the decomposition coefficients for

the layered audio

A fractal pattern is only obtained if the graph formed is linear. The graph here has been

limited to solely 7 data points because adding more points reduces the accuracy of the linear

function given as the R2 value reduces significantly.

From the proof, the fractal dimension of the signal is In this case, the fractal dimension5− 𝑀
2 .

obtained is 1.59.
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However, in order to make a conclusion, the fractal dimension of the audio without the extra

fractal-like layers needs to be analysed. The variance at different levels for the base audio has

been given below:

Level
(scaling
vector)

Variance of Decomposition Coefficients 𝑙𝑜𝑔
2
(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

1 5. 508023009471281 × 10−5 − 14. 1481058882

2 4. 216274983871875 × 10−4 − 11. 2117434175

3 0.002892597078669 − 8. 43341890612

4 0. 014820984965500 − 6. 07621486105

5 0. 053262113098713 − 4. 23074652321

6 0.185377521599113 − 2. 4314617778

7 0.399187062853260 − 1. 32486312937
Table 6: Variance of the decomposition coefficients of the Wavelet at varying scaling parameters (for base audio)

From the information given above, the same plot was created:

Fig 25. The obtained linear plot of the level vs log (variance) of the decomposition coefficients for the base audio
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The same formula involving the slope of the line was used. The fractal dimension

ultimately obtained was 1.42.

7 | Evaluation

7.1 | Limitations

While this investigation has yielded the intended results, there are limitations to the

method. Given that MATLAB has been used to process the math, there could be processes in the

code that have not been accounted for. Since there is a lack in programming knowledge, the

processing and accuracy of the commands imputed into MATLAB cannot be analysed in detail

As a result, the obtained results may not be entirely accurate.

7.2 | Improvements

Possible improvements to the method include performing the same analysis on pieces of

music that range between different genres and observing whether a pattern of fractal dimensions

emerges when the genre of music is changed. This would help compare and contrast the

complexity in the structures of specific music genres. Moreover, if genres were to differ in their

fractal dimensions, the fractal dimension could serve as an indicator of style, perhaps providing a

greater insight into why composers adhere with/deviate from particular patterns. Finally,

different music evokes varied emotional responses from an audience. Deciphering the difference

in fractal characteristics could further help explain why this happens in general.
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To increase the overall accuracy of results, other platforms such as Python could be used

to generate all the results that were otherwise obtained through MATLAB.

8 | Conclusion

To conclude, finding the fractal dimension in audio files using the Fourier and Wavelet

Transforms is possible to a large extent. Through the use of the boxcount method and the

decomposition coefficients of the wavelet transform, the fractal dimension of a layered audio that

has been temporally scaled and tonally manipulated has been obtained. When compared to the

base melody created by the audio, the fractal dimension obtained is a higher value indicating

greater self-similarity. While using the Fourier Transform was instrumental in understanding the

way musical characteristics influenced the waveform, obtaining the fractal dimension was not

possible as the effect of tempo manipulation did not provide a concrete reflection in the

waveform. Since the fractal patterns largely relied on tempo variations, the desired results were

not obtained. The lack of results prompted the use of the Wavelet Transform which allowed for

the analysis of time and frequency simultaneously.

This investigation proves that layering an audio with temporally scaled versions of itself

does, in fact, increase the audio’s self-similarity index and thus its fractal dimension. The fact

that the Wavelet Transform has been used to obtain the fractal dimensions shows that the

transform can be used to obtain the fractal dimension of any audio through the methodology

employed in this investigation.
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